Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Rheumatology (Oxford) ; 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2298913

RESUMEN

OBJECTIVES: Granulomatosis with polyangiitis (GPA) is a chronic relapsing systemic autoimmune vasculitis. Current treatment of GPA is unsatisfactory as it relies on strong immunosuppressive regimens, with either cyclophosphamide or rituximab, that reduce the immunogenicity of several vaccines and are risk factors of severe form of COVID-19. This emphasizes the need to identify new drug target and to develop treatment strategies with less harmful side effects. Since CD4+ effector memory T cells (TEM) play a key role in the pathogenesis of GPA, we aimed in this study to modulate CD4+TEM cell activity via Kv1.3 blockade using the specific peptide inhibiter, ShK-186. METHODS: Peripheral blood of 27 GPA-patients in remission and 16 age- and sex-matched healthy controls (HCs) were pre-incubated in vitro in the presence or absence of ShK-186, followed by stimulation with PMA, calcium ionophore and brefeldin-A. The effect of ShK-186 on the cytokine production (IFNγ, TNFα, IL-4, IL-17, IL-21) within total and subsets of CD4+TH cells were assessed using flow cytometry. RESULTS: ShK-186 reduced the expression level of IFNγ, TNFα, IL-4, IL-17, and IL-21 in CD4+TH cells from GPA-patients in vitro. Further analysis performed on sorted CD4+T cell subsets, revealed that ShK-186 predominantly inhibited the cytokine production of CD4+TEM cells. ShK-186 treatment reduced the production of the pro-inflammatory cytokines to the level seen in CD4+ TH cells from HCs. CONCLUSIONS: Modulation of cellular effector function by ShK-186 may constitute a novel treatment strategy for GPA with high specificity and less harmful side effects.

2.
Int J Obes (Lond) ; 47(2): 126-137, 2023 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2259325

RESUMEN

BACKGROUND: Obesity is a risk factor for adverse outcomes in COVID-19, potentially driven by chronic inflammatory state due to dysregulated secretion of adipokines and cytokines. We investigated the association between plasma adipokines and COVID-19 severity, systemic inflammation, clinical parameters, and outcome of COVID-19 patients. METHODS: In this multi-centre prospective cross-sectional study, we collected blood samples and clinical data from COVID-19 patients. The severity of COVID-19 was classified as mild (no hospital admission), severe (ward admission), and critical (ICU admission). ICU non-COVID-19 patients were also included and plasma from healthy age, sex, and BMI-matched individuals obtained from Lifelines. Multi-analyte profiling of plasma adipokines (Leptin, Adiponectin, Resistin, Visfatin) and inflammatory markers (IL-6, TNFα, IL-10) were determined using Luminex multiplex assays. RESULTS: Between March and December 2020, 260 SARS-CoV-2 infected individuals (age: 65 [56-74] BMI 27.0 [24.4-30.6]) were included: 30 mild, 159 severe, and 71 critical patients. Circulating leptin levels were reduced in critically ill patients with a high BMI yet this decrease was absent in patients that were administered dexamethasone. Visfatin levels were higher in critical COVID-19 patients compared to non-COVID-ICU, mild and severe patients (4.7 vs 3.4, 3.0, and 3.72 ng/mL respectively, p < 0.05). Lower Adiponectin levels, but higher Resistin levels were found in severe and critical patients, compared to those that did not require hospitalization (3.65, 2.7 vs 7.9 µg/mL, p < 0.001, and 18.2, 22.0 vs 11.0 ng/mL p < 0.001). CONCLUSION: Circulating adipokine levels are associated with COVID-19 hospitalization, i.e., the need for oxygen support (general ward), or the need for mechanical ventilation and other organ support in the ICU, but not mortality.


Asunto(s)
Adipoquinas , COVID-19 , Humanos , Anciano , Leptina , Resistina , Nicotinamida Fosforribosiltransferasa , Adiponectina , Estudios Transversales , Estudios Prospectivos , SARS-CoV-2 , Inflamación
3.
Front Immunol ; 13: 879033, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1933662

RESUMEN

Clinical observations have shown that obesity is associated with the severe outcome of SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived mediators such as leptin and other adipokines have also been linked to endothelial dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral proteins and no newly produced virus was detected. In addition, exposure to the virus did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory activation of endothelial cells. To verify if the lack of activated phenotype in the presence of adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of endothelial cells, even in the presence of leptin and other mediators of obesity. Instead, endothelial activation associated with COVID-19 is likely a result of inflammatory responses initiated by other cells. Further studies are required to investigate the mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving severe disease in obese individuals.


Asunto(s)
COVID-19 , Selectina E , Células Endoteliales , Humanos , Molécula 1 de Adhesión Intercelular , Interleucina-6 , Pulmón/irrigación sanguínea , Obesidad , SARS-CoV-2 , Molécula 1 de Adhesión Celular Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA